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Abstract

A graphical compilation of the rake guides of fault striations of known sense facilitates a simple test for their compatibility with

Andersonian stress conditions. A compilation of negative double strike angles, on tracing paper, is superimposed on the rake guide plot. If the

two register, the candidate generating stress is given by the relative position and orientation of the two plots.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction: subject and scope

This paper describes a geometric test of whether a set of

striated faults is compatible with a single generating stress

state with a vertical principal axis (i.e. ‘Andersonian’

stress). If the outcome is affirmative, the result provides an

estimate of the reduced stress tensor.

This test relies on the assumption that each striation

indicates the direction of resolved shear stress on its plane.

The procedure involves trigonometrical calculation, such

as might be undertaken using a simple electronic calculator,

but otherwise is achieved using only pencil, protractor, ruler

and tracing paper.

All conventions and symbols used in this paper accord

with Fry (2003).

2. Test procedure and example

The following information is used for each fault (Fig.

1a): the strike of the fault plane (angle s, measured

clockwise from north); the dip of the fault plane (angle

d ); the pitch/rake of the striation (angle l ); and the

movement sense. Sense is incorporated by using a 3608

range of possible rake angle, giving the direction of the

hanging wall relative to the footwall, measured clockwise as

viewed from above, from a l ¼ 0 reference direction of

pure sinistral strike slip.

The stages in the procedure are as follows:

1. Calculation of two new angles for each fault, as shown in

Table 1.

These are 2s, twice the measured strike, and b, the

‘rake guide angle’ (Fry, 2003). Both have a range of

3608. In this paper, the ranges are both 08–3608, but

this is inconsequential as it is only the directions

indicated by these angles that are used further. The

strike polarity—whether the measured angle is s or

(1808 þ s )—is also of no significance because the

angle is doubled. The rake guide angle projects

perpendicularly onto the fault plane as the angle of

rake (Fig. 1a). Its value can be calculated using the

formula:

b ¼ arctanðtanl=cosdÞ ð1Þ

but the result may require addition of 1808 to ensure

that the direction indicated lies in the same quadrant as

that of the measured rake, l. For this purpose, it is easy

to check that b and l lie in the same 908 range. In Table

1, for example, faults C–E all have 2708 , l # 3608,

and therefore also 2708 , b # 3608, while for faults A,

B and F, 1808 , l # 2708, so also 1808 , b # 2708.

(The earlier definition of angle b (Fry 1992b) was not

specific enough in this regard for this purpose.) The

rake guide angle, b, could also be evaluated

graphically.
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2. Construction of rake guides on a large sheet of plain paper

(Fig. 1b).

Draw horizontal and vertical axes intersecting at a

central origin. The rightwards axis is the common

reference direction, b ¼ 0. For each fault, draw and

label the direction of its rake guide, which is the line,

outwards from the origin, at angle b clockwise from

the b ¼ 0 reference axis.

3. Construction of negative strike double angles on a sheet

of tracing paper (Fig. 1c).

Fig. 1. (a) Angles and directions for a striated fault, in the usage of Fry (2003). The north azimuth, the strike of the fault plane, and the intervening angle, s, lie in

the horizontal. Strike, the striation direction, and the intervening angle of rake, l, lie in the fault plane. The rake guide is the horizontal direction, which projects

perpendicularly onto the fault plane as the striation direction, with rake guide angle, b, projecting to rake, l. See text for further details. (b) Rake guides are

compiled radiating from the intersection of horizontal and vertical axes. In this example, using the values in Table 1, all striations have reverse sense, so all rake

guides are upwards from the origin, with rake guide angles, b, in the range 1808–3608. (c) The double strike angles, 2s in Table 1, are plotted anticlockwise on a

piece of tracing paper by marking their intersection with a circle. The radius, r, is chosen to be slightly less than the spread of the rake guides in (b). (d) The

tracing sheet is superimposed on the plain paper such that each 2s point overlies the rake guide of the same fault, while the centre of the 2s circle lies on the

vertical rake guide axis. The angle that the rake guide plot lies clockwise of the tracing plot is 2y—twice the bearing, y, of the direction of maximum horizontal

compression. The upwards distance, d, on the rake guide plot, from the origin to the centre of the 2s circle, is gr, where r is the radius and g is the tectonic

regime parameter (see text). In this example, 2y ¼ 1408 and d ( ¼ gr ) ¼ 3r. So, the stress state had a maximum horizontal compression lying in the direction

0708 and a tectonic regime parameter of 3, according with the alternative specifications, that R ¼ 21 (Simón-Gómez, 1986) and F ¼ 2608, illustrated for this

data set in Fig. 1 of Fry (1992b).
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Mark a central point. Draw a circle about this origin,

and a downwards radius to be used as the 2s ¼ 0

reference direction. For each fault, mark and label the

point on the circle which lies at angle 2s, measured

anticlockwise around the circle from the 2s ¼ 0

reference axis.

4. Attempt to put the two plots in register (Fig. 1d).

Place the tracing paper over the plain paper and, by

trial and error, find the relative position and orientation

such that every point on the tracing sheet lies over its

own line on the underlying paper. (1) The central point

of the circle must lie on the line of the vertical axis. (2)

The point representing each fault must, to be

compatible with Andersonian stress conditions, lie

on the line that represents the same fault.

3. Interpretation: case of perfect register of points with

their lines

3.1. All data in register

If every point registers with its own line at the same time,

as in Fig. 1d:

1. The entire set of faults recorded is compatible with the

same Andersonian stress conditions.

2. The downwards axis on the plane paper lies at angle 2y

from the zero axis on the tracing sheet, where y (in the

usage of Fry (1992b) after Simón-Gómez (1986)) is the

bearing of the direction of maximum horizontal

compression.

3. The distance, d, upwards (on the plain paper) from the

origin of the rake guides to the centre of the circle

(tracing) is a proportion of the circle’s radius, r, equating

to the ‘tectonic regime parameter’:

d=r ¼ g ¼ ðsh1 þ sh2 2 2svÞ=ðsh1 2 sh2Þ; ð2Þ

where subscript v indicates vertical, h horizontal and

sh1 $ sh2 (Célérier, 1995). From this value, any other

desired formulation of stress ratio may be calculated.

3.2. Subsets of data in register

If only a subset of the fault points overlie their lines

simultaneously, the subset is compatible with a single

generating stress state, which can be evaluated as above.

Theoretically, any number of such subsets may be

independently identified, each with its own relative position

and orientation of tracing and plain paper indicating its

stress state.

4. Errors, uncertainties and approximations

In practice, it is likely that the match between points and

their lines will be only approximate, in which case

appreciation of the acceptability and likely magnitudes of

errors may be required. Errors differ in type and likely

magnitude for different ranges of dip and rake values.

Consequently, some points should be weighted more

heavily than others in the fitting procedure, and some,

perhaps, discarded altogether.

4.1. Unacceptable uncertainty at dips less than 128

For Andersonian stress conditions, as a plane tends to

horizontal, the shear stress on it should tend to zero, and

fault movement should not happen. Striated faults of low

dip are not likely to be compatible. It is unlikely that they

could contribute to definition of any stress state that is

Andersonian.

Only slight divergence of the principal stress axis from

verticality can result in large modifications of rakes of

resolved shear stress on shallowly dipping planes. Conse-

quently, inclusion of such data may detract from an

otherwise good stress approximation given by planes of

greater dip.

As the dip of a plane decreases, its strike becomes

increasingly ill determined until, for a horizontal plane,

strike is indeterminate. At small dip, the recorded value of

strike is extremely sensitive to any misjudgement of the

horizontal.

For all the above reasons, it is suggested here that fault

planes with a dip of less than 128 be excluded. Such data

cannot contribute reliably to the test described in this paper,

or to any other method that assumes (‘Andersonian’) that a

plane’s strike lies in a principal stress plane. Fry (1992b)

was wrong to extend to low dip the claim for his (F,2y )

method (p. 1128) that “departure from the assumed

verticality of one principal axis leads to ,108 error in

(F,2y )” (Célérier, pers. commun.).

This 128 threshold is set arbitrarily. At 128, if there is

error in field measurement such that a line of plunge 18 is

Table 1

Synthetic data set of Table 1 and Fig. 1 of Fry (1992b). All values are in

degrees and are given in the range 08–3608. The data are presented in dip

order, to show more easily the increasing divergence between b and l with

increasing dip. Values of rake, l, and rake guide angle, b, have been

redefined to incorporate shear sense

Fault identity Strike Dip Rake

(pitch)

Values for use

in the test

New 1992b s d l b 2s

A 5 235 41 253 257 110

B 1 30 42 244 250 60

C 2 86 56 294 284 172

D 3 124 60 300 286 248

E 6 320 76 306 280 280

F 4 170 84 230 265 340
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taken as strike, the error induced in 2s is not more than 108.

For a 28 error in the horizontal, a threshold dip of 228 would

be required to keep error in 2s below 108. One may wish to

vary the threshold dip to be applied, to match the possible

magnitude of errors from this source to the uncertainty

accepted from the rest of the data, as discussed in Section

4.3, below.

As pointed out elsewhere (Fry, 1992a), although strike

and rake are ill determined for planes of low dip, the

directions specified by their combinations are not (and are

better measured as azimuth and plunge). Therefore, an

appropriate method for data, that include striated faults of

low dip will not only be one which determines whether a

principal stress axis is close to vertical, rather than making

this assumption, but will do so by using, for the purpose of

minimising residuals, reconstitutions of any poorly deter-

mined raw data into well determined measures, as does

Fry’s (1999) use of direction cosines.

4.2. Unacceptable uncertainty in b at low rake on steep

faults

The main source of uncertainty in the value of b arises

from magnification of measurement errors, by the projection

from the fault plane to the horizontal, in accord with Eq. (1).

This magnification becomes a serious consideration for

striations with rake within 308 of horizontal on planes

dipping more than 608. For the l range of 08–3608 used in

this paper, this translates for sinistral displacement to

l , 308 or l . 308 (within 308 of l ¼ 08 or l ¼ 3608), and

for dextral displacement to 1508 , l , 2108 (within 308 of

l ¼ 1808). To avoid such lengthy specifications, in the

discussions that follow all such cases will be assumed

covered by the phrase ‘rake of less than 308’ and by the

formulation ‘l , 308’, with similar usage extended to other

angles of rake, such as 158.

At the limits to this range (d ¼ 608,l , 308 or

d . 608,l ¼ 308), magnification is approximately by a

factor of two, but it increases to a factor of four or more

at dip of 758 or rake of 158. At combinations of dip greater

than 758 and rake less than 158, this increase is more rapid. It

is suggested here than data should be excluded if d . 758

and l , 158. Whether to use other data within the range

(d . 608,l , 308) is a question to be addressed in light of

the accuracy achieved by other data, as discussed in Section

4.3.

As with shallow dip data, this exclusion of data should

not be considered a failing of this particular method. As a

plane tends to vertical, the Andersonian symmetry requires

that the direction of resolved shear stress tend to horizontal,

as illustrated by Fig. 13 of Célérier (1995) and by Fig. 6 of

Fry (2003). So, nearly horizontal shear on steep planes can

never provide a good constraint on possible values of g by

any method, although the constraint it provides on possible

orientations of the horizontal principal stress axes may be

valuable.

4.3. Errors for data outside the ranges addressed above

In the previous two sections, the approach taken to

uncertainty is based on comparability. It is assumed that the

measurement errors in the three measured angles, s, d and l,

are equivalent. The error in measurement of strike is

magnified by a factor of two in plotting 2s. Therefore, for

practical purposes, it is appropriate to accept error of similar

absolute magnitude in b, as one cannot tell, from a mismatch

in this test, which may have contributed. The limits to the

ranges specified in Sections 4.1 and 4.2, above, are close to

those at which measurement errors are magnified by a factor

of two. For the entire range of dip and rake combinations

outside those ranges, the magnification factor of measure-

ment errors is about two or less. Therefore, a reasonable

practical approach for most data is to consider, as a perfect

match, all points that lie closer to their corresponding lines

than an angular error in either b or 2s of twice that of normal

angular measurement.

Mismatches of somewhat more than twice measurement

error may be treated as possible matches, if they derive from

data at the limits of those ranges discussed in Sections 4.1

and 4.2. If such mismatches come from data well outside

those ranges, they indicate only an imperfect approximation

to the assumption of a single and Andersonian stress.

5. Conclusions regarding status of data and

interpretation of mismatch

From the above consideration of errors and uncertainties,

it is concluded that:

1. If dip is less than 128, the fault should not be included in

the test. The stress that generated it was probably not

Andersonian.

2. If the dip is greater than 758 and the rake is less than 158,

the fault should not be included within this test. Its

generating stress was possibly Andersonian, and it may

provide useful constraints on horizontal stress orien-

tation, but it cannot contribute to determination of g.

3. Faults with dip greater than 608 and rake within 308 of

horizontal, not covered by point 2, above, may be

acceptable at mismatches greater than double the normal

measurement error, but should not be given preference in

determining the fit between the strike and the rake guide

plots.

4. For each fault ouside the ranges in points 1–3, above,

mismatches in excess of twice the possible error of the

original measurements indicate either, if small, that the

assumption of movement in response to a single

Andersonian stress state is only an approximation, or,

if large, incompatibility with the Andersonian stress

indicated by the relative position and orientation of the

two plots.

N. Fry / Journal of Structural Geology 25 (2003) 897–901900



6. Conclusions and perspective on the usefulness of the

method

6.1. Overview of context: methods and assumptions

There are two approaches to testing fault/slip data for

compatibility with an Andersonian stress. One is to

undertake a stress determination with essentially only one

assumption—that if the data can be explained as the

directions of maximum shear stress imposed by a single

stress tensor, then they should be—and see if it gives a

principal stress axis that is vertical. There are many

published methods for such determinations, which will not

be discussed further here. They tackle a problem which,

viewed geometrically, lies on a curved four-dimensional

surface within an, at best, five-dimensional parameter space

(Fry, 1999), which requires substantial computation.

This method belongs to the alternative approach, of

compiling the data assuming a vertical principal stress axis.

This is much simpler, corresponding geometrically to a

problem on a two-dimensional surface within three-dimen-

sional parameter space, susceptible to graphical analysis,

either on a stereogram (Fry, 1992b) or in some projection

(Simón-Gómez, 1986; Célérier and Séranne, 2001; this

paper). If data plot in such a way as to indicate compatibility

with a single stress tensor, we draw two conclusions. The

first is that the data should be explained by a single stress

tensor. The second is that that tensor is Andersonian, with a

vertical principal axis. The latter is justified on condition of

the former. Unfortunately, the former conclusion, that the

data are compatible with a single stress tensor at all, may not

be justifiable. The data of Table 3 of Fry (1992b) appear to

give a good match to an Andersonian stress tensor (Fig. 10

of Fry (1992b)) but do not give good agreement to a single

tensor when the Andersonian assumption is removed. This

issue deserves further investigation.

6.2. Overview of graphical methods

Of those that assume a vertical principal stress axis,

different methods are appropriate to different purposes.

The test described in this paper may be mainly of didactic

use, applied to small sets of data. Its two elements—rake

guide angles and double strike angles—are conceptually

only slightly removed from actual rake and strike, and the

method assists understanding of the relationship between

the two. However, when used for a large data set, the arrays

of lines on both constituent plots become crowded, making

the matching procedure difficult. With heterogeneous data,

it is almost impossible to know whether one has tried all

possible matches of position and orientation that might

identify homogeneous subsets.

For small sets of natural data, the easiest graphical test of

compatibility with the Andersonian assumption, which also

gives an estimate of the reduced stress tensor, is the half

great circle F(R ),2y stereogram of Fry (1992b, Figs. 9 and

10). This also has some didactic use regarding symmetry

constraints and likely misinterpretations of data. It is also a

method that can be used when some data (plotted as full

great circles as in Fig. 1b of Fry (1992b)) are of unknown

shear sense.

The historically pioneering (y,R ) projection of Simón-

Gómez (1986) is more work and more potentially mislead-

ing than the otherwise equivalent alternative of the (F,2y )

stereographic projection (Fry, 1992b).

For larger data sets, point plots of data are more

intelligible than intersecting line plots. If the data accord

with one or two Andersonian stress states, the pole version

of the (F,2y ) stereogram of Fry (1992b) gives easy rapid

confirmation. However, if they do not, the amount of

information that may be retrieved from the plot is usually

minimal. This method also requires that the sign of the

tensor, given by shear senses, must be checked separately.

For complex data sets, the method of Célérier and

Séranne (2001) has the major advantage that it is the only

method using a plot that retains the original strike and rake

information. This is even more informative if the symbols

carry some information about the dips of fault planes. The

plot remains valuable, even if the Breddin’s graph has not

succeeded in providing a reasonable stress tensor for some

or all the data. The Breddin’s graph is placed over the data

as a moveable overlay—hardly an onerous procedure, if the

plot has previously been produced, as valuable in its own

right. The other methods mentioned above produce plots

that turn out to be of little use if a simple stress

determination fails.

Making a choice between these possible methods may be

unwise. A quick test may be productive in simple cases. It

may be that, with increasingly complex data, it is

increasingly unwise to build in the Andersonian assumption

of vertical principal stress. It depends on situation and

purpose.
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